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Structure and effective interactions in three-component hard sphere liquids
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Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere
mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing
fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as
applied to multicomponent systems by Lebowihys. Rev133 A895 (1964 ]. As an important application,
we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained
in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is
obtained from the correlation functions by using an approximate inversion, and examples of effective potentials
for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study
of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from
melts with at least three atomic constituents.
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[. INTRODUCTION component hard sphere mixtures, the choices of parameters
being motivated, in particular, by the observation that non-
The starting point of this paper is the determination of thecrystalline solids may often emerge from melts where at least
partial structure factors for the three-component hard spheréree atomic constituents are present.
liquid in the Percus-Yevick approximation, obtained using
the Laplace transform methods of Werthéditi, Thiele[2], Il. THE PARTIAL STRUCTURE FACTORS
and Lebowitz[3]. The corresponding total correlation func- FOR THE TERNARY HARD SPHERE LIQUID
tions then follow by direct Fourier transformation. Full The derivati f th Mical il ‘
knowledge of the analytical partial structure factors and th e derivation of the analytica partlg g;trgcture actors
corresponding correlation functions is the foundation upoﬁl?r t_he three-qomponent hard sphere liquid in the Percus-
which our subsequent investigationsedfective potentialg evick approximation exte_nds the Laplace transform meth-
ternary hard sphere mixturéSecs. IV and VY rest. The no- ods of Werfchelm and Thiele for the one-component hard
tion of an effective potential in a classical system follows theSphere liquid, and of Lebowitz for the binary mixture.

familiar corresponding quantum mechanical concept, whic |er}e:|— Htc))prtraps[grma;|?n trEethodltg have beetnl_us%dbsuc—
arises from tracing out “fast” degrees of freedom in a sys-Cess ully by Baxtefs] and for the mutticomponent iquid by

tem with components of different scales, for example, sys-BI'“'m.f.amﬂI Stte”[te;]d Tﬁsinmger, Reiner, tand i(aﬁ]bha;\r:_e
tems of electrons and ions. The principle can be transferregPeciically treate € three-component system by this ap-
to classical systems, and might be referred to as “classicaqroaCh for the real-space structure. In what follows, the focus

screening:” it is familiar from the concept of screening in will be on the reciprocal-space structure as manifested

guantum systems, for example, in metals. An immediate apt_hrough the parUa] structure factors, thesg generally being the
quantities most directly related to scattering experiments.

plication is therefore to the idea of effective potentials as The three di ters in the mixt ill be tak S
they may arise in the ternary hard sphere mixture. In particu- € three diameters in the mixture will be takengsior
Iae smallest species;, for the intermediate sized species,

lar we show that the presence of three components can led : L
to effective potentials whose shape may even favor the emefNd @3 for the largest speciesr, <o, <o3. The additive
gence of unusual solids from the melt. This may occur for afiXture has contact distances;; =;(o;+0y), and the
effective potential with flat well regions that allow a continu- Ornstel_n-Zermke(OZ) equation for the homogeneous ter-
ous positioning of particles, or for a potential with double Nary mixture is then

wells of comparable depth, or even with peaks in the poten-

tial that are positioned at separations where they can inhibit  [g;;(r)—1]=c;;(r)+ p; J [gu(r' —r])—1]
standard crystalline arrangements from forming upon freez- =123 Jv

ing. e (r')dr!
The paper is therefore arranged as follows: Section Il pre- Gy(riyar’. @

sents the solution of the Percus-Yevick equation for thep flyig mixtures the Percus-Yevick closure is given by
three-component hard sphere liquid and gives simple closed-

form analytical expressions for the partial structure factors, gij(r) (e APit0 —1)=e APi(g; (1) 2
Sec. Ill briefly discusses the concept of effective attraction

and its entropic origin4], Sec. IV introduces our method for for corresponding pair potentiaty;; . For hard sphere po-
calculating effective potentials in hard sphere mixtures, andentials the Percus-YevickPY) approximation then reduces
Sec. V presents examples of effective potentials in threeto
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gii(r)y=0 for r<oj;, (39 T
’ ’ Ui:gPiU?ZGiUis: (6)
and
and£=e,05+ e,05+ €307 is the conventional total packing
fraction.
The coefficientdwith oj;=o;}; and ;= o;) are then

Cij(r)=0 for r>0’ij. (3b)

The Percus-Yevick equatidmafter insertion of Eqs(2) and
(3) into Eg.(1)] can be solved with Laplace transform tech- o Bp( )
niques following Lebowitz’s solution for the binary hard = P1.P2:P3 ,
sphere mixturd3]. The essential steps to the analytical so- api
lution to the Percus-Yevick equations di¢ the use of the
PY statement$3) to define an auxiliary function that is pro- 3
portional to the direct correlation function inside the core, bi=—62, eDigi(a),
proportional to the pair distribution function outside, and =1
continuous at contacfii) a rewriting of the OZ equatiofil)
in terms of an auxiliary function and a rewriting of the inte-
grals using bipolar coordinate@ij ) the Laplace transform of bi; = —621 €009 (07) 9 (o9),
the OZ equation in this form(iv) the use of Liouville’'s N
theorem and Watson's lemma to solve the OZ equation for
the Laplace transform of the auxiliary function, and finally and
(v) an inverse Laplace transformation to obtain the auxiliary )
functions and thus also the direct correlation functions in real d=3z(€18;+ €a,+ €383). @)
space.(Extensive details of the calculation for the ternary
hard sphere mixture can be found in Rif].) The manipu-  Correspondingly the pair distribution functions at contact are
lations largely follow those presented in Lebowitz’s solutiongiven by
for the binary mixturd 3], but the solutions do differ, impor-
tantly, in the form of the coefficients for the cubic polyno-  g;i(o\)=[(1- &)+ 0i(€10%+ e,05+ €302) ]/ (1— £)?
mial direct correlation functions.

The direct correlation functions of the ternary hard sphergyq
mixture, with the definitionsx;;=r—X\;; and \;j=3|o;
—ojl, are then found to be, for species 1,2,3,

3

gij(aij)=[o;0ii(07) + 0igjj (o)) 1120 . (8)
— 3

—Ci(r=a+br+dr, r<o, These contact values are readily obtained from the required

continuity of the direct correlation function and the pair dis-

—Cij(N=—cu(r)=a, r<ij, tribution function at contact, that is;-c;;(oy;) =gj;(oy))-
—a+ (b X2 + 4N A +dx )/ They are an important thermodynamical corroboration, since

R e e they are related to the pressuie the exact cageand to the

(4) virial pressure in the PY approximation. The virial pressure
p’ can be found from the contact values through the virial
theorem, as generalized to ternary mixtur@s namely,

)\ij <r<0’ij ,
with the coefficients defined below. The presspfevia the
compressibility, is given by
ﬁpU:P1+Pz+P3+%Wi j;zspipja'izjgij(a'ij)- (€)

BP(p1.p2.p3)=1(p1+patp3)(1+E+EP)

The partial structure factors can be expressed in terms of the

Fourier transforms of the direct correlation functions, and the

—(18/m) >, (01— 07)} 20+ 0i0i(105  Fourier transformations of these finite range polynomials can
= all be expressed in terms of Bessel functions. For the simpler

) ) 4 diagonal cases we have
t €05t €303)] 1 (1-8) 77, (5

~cy(k)= [ dre, (et
with p;=p{"=N;/V as the average one-particle density of v

specied. The g’s are the reduced partial packing fractions, A (o

€,= mp;/6, and simply introduced for calculational ease. The :_f ar sin(kr)(a;r +b;r?+dr%), (10
usual dimensionless definition of the partial packing fraction k Jo

is in terms of the number density and the diameter of a

sphere of specieis namely, and performing the integral overwe get
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24eq )
piCii(K)=— F(ai[sm(ko'i)_ka'i cogkay)]
by | ,
+ F{Zka'i sin(kai) —[(ko;)°—2]cog ko) — 2}

+ %{[4(koi)3— 24k o ]sin(ka)
—[(kay)*=12(koy)*+ 24]cog kay)}). (11)
Taking an off-diagonal case we have
_C”(k):‘%uo ”drsin(kr)air+Li;'drsin(kr)
X[y (r=Nij) 2+ 4Nd(r = N3 +d(r =N,
(12)

with the result that foi <j

24\ e €,
VpipjCij(K) = — %

aj[sin(kay;) —kaj; cogkoyj) ]

+ %{ZKm Sin(kg‘i)+[2_(k0i)2]cos(kaij)

o (3l(ko)?=2]

X sin(kaij) +kai[6— (koi)?]cog ko))

—2 cogkhj)}+

xsin(koj) = [ (koy)*—12(koy)?

+24]cog kajj) +24 cogkhj)} |. (13

We use the definitions of Ref9] for the partial structure

factors of a mixture, namely,
Sij(k) = 6i;+ Vpip; Jvdr e gij(n—1]

:5ij+\/pipjjvdr eik'rhij(r). (14)

PHYSICAL REVIEW B3 041203

Si(k)= pip,-ci,-<k>+2| VoipiSi(kic(k), (15

with the structure factors themselves given I8 (k)

=~Sij(k)+ dij - An example for the solution of a diagonal
case is then

S11(K) ={1— paC(K) — p3C33(K) + p2p3
X[ Can(K)Caa(k) —Coa(k)2]}HD (k) (16)

with the denominator

D(K) =1—p1C11(K) = p2C2x(K) — p3C33(K)
+ p1p2C11(K) C2x(K) + p1p3Cia(K) Ca5(K)
+p2p3C2a(K) Cas(K) — p1p2C12(K)*— p1psCis(k)?
— p2p3C23(K)*+ p1pops[ C1a(K)*Cag(K)
+C19(K)*Coo k) + Cog(k)?C(K)

—2C1(K)C13(K)Cag(K) — C15(K)Con(K)Caa(K) 1.
(17)

As an example for the off-diagonal case we may give

S1AK)=Vp1p{CiAK)[1—p3Caa(K)]
+ p3C13(K)Coa(K) }/D (k) (18)

and it is clear that the complete set of partial structure factors
Sj (k) is now straightforwardly evaluated using as input just
the five parameters of the three-component hard sphere lig-
uid (the two relative sizes of the hard sphekes/o; and
o,/o5 and the three partial packing fractiong, #,, and

73). This set of closed-form functions constitutes a primary
result of the present paper; they are the direct parallels of Eq.
(6) of Ashcroft and Langreth(Ref. [9]) for the two-
component case, and direct comparison immediately reveals
the degree of complexity introduced by an additional com-
ponent. Figures 1 and 2 show, respectively, diagonal
[Sij(k)] and off-diagona[ S;; (k) ] examples of partial struc-
ture factors for relative diameteks;=1, 0,=0.6, ando;
=0.2 (and for packing fractionsy3=0.47, ,=0.05, and
71=0.05).

Ill. APPLICATION TO ENTROPIC FORCES: CLASSICAL
SCREENING AND THE NOTION OF THE DEPLETION
POTENTIAL

In metallic systems ionic interactions are often described
by effective (and state dependegnpotentials; for structural
purposes the electrons are neglected in all but their screening

These definitions incorporate the standard expectation thafffect on the interaction between the ions. In the free energy

the diagonal entrieS;; should approach unity for larde and
the cross termsS;;, i#j (for unlike species should ap-

proach zero in the same limit.

of a classical system the momenta can be traced over trivially
since all momenta are permitted classically. Nevertheless,
because of the differing set of initial interactions the concept

Using the Ornstein-Zernike equation in reciprocal spaceof effective potentials can still remain applicable to classical

we can now rewrite the partial structure factf®$ in terms

of the direct correlation functions, namely,

systems. In the classical hard sphere liquids discussed below,
we integrate out the degrees of freedom of the smaller spe-
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— h,,(v) for ternary mixture
----- h,,(r) for binary mixture
6 - —-—- h,,(r) for one-component _

0.5 . 1 1.5 2 25
1/o,

FIG. 3. Total correlation functiom(r)=g(r)—1 of the large
FIG. 1. Diagonal structure factors for the ternary hard sphergpheres with packing fraction=0.47, in a one-component, a bi-
mixture as a function oko for diameterso;=0.2, 0,=0.6, o3 nary (o,/03=0.2, 7,=0.05, 73=0.47), and a ternary o /o
=1 and packing fractions; =0.05, 7,=0.05, 73=0.47. =0.2,0,/03=0.6, n,=1,=0.05, 73=0.47) liquid. These are ob-

) ) ) tained by direct Fourier inversion of the partial structure factors.
cies and subsume their effects in the structure of the system

through the introduction of an effective interaction betweeneffective one-component system differs from the structure of
the remaining larger particles. This effective interaction ora pure one-component hard sphere liquid at the same packing
effective potential is also referred to aslepletion potential fraction, and corresponds to an effective pair potential be-
in the literature on liquid mixtures and colloid suspensionstween the spheres deviating from the pure hard sphere po-
[10—14. We base our investigation of effective interactionstential. It will be seen below that there are important differ-
on the microscopic structure of the mixture, and in the hardences between the two- and three-component cases.
sphere liquid mixtures investigated here the partial structure To review the concept of effective potentials in the clas-
factor of the larger spheres is to be reinterpreted as the strusical context consider a one-component hard sphere liquid of
ture factor of an effective one-component system consistinginit diameter with packing fractiop=0.47. To this system
only of those larger spheres. The presence of the smaHard spheres of smaller diameters are now added, and it is
spheres is then expressed only in its effect on the structure d@fiteresting to ask how the structure factor and correlation
the larger[15] As Fig. 3 demonstrates, the structure of thefunction of the spheres of unit size change after addition of
the smaller spheres. Figure 3 actually answers this question
1 . ‘ by comparing the total correlation function for a one-
component liquid of hard spheres of diameterand pack-
ing fraction »3=0.47 with the total correlation function of
those spheres in hinary mixture after small spheres of di-
ametero,=0.2 and packing fractiony;=0.05 have been
added, and finally in ¢hree-componermmnixture where small
spheres of diameter;=0.2 and packing fractiony;=0.05
as well as intermediate spheres of diameter=0.6 andz,
=0.05 have been added. The required total correlation func-
tions of the mixtures are obtained from the partial structure
factors in Sec. Il by direct Fourier transformation.
— s The presence of the smaller spheres is seen to be ex-
(k) ) . :
_____ S,,(K) pressed in the total corrglgtlon function of the large spheres
— S,k | by the presence of additional peaks or shoulders, and as
physically expected these fall at separations roughly corre-
sponding to the diameter of the smaller species. They also
2, - : lead to a higher contact value of the pair distribution function
ko, of the large species. The length scale of both the small and
the medium spheres is clearly revealed in the total correla-
FIG. 2. Off-diagonal partial structure factors for the ternary hardtion function of the large spheres. If we now ignore the
sphere mixturgand for the parameter set given in Fig. 1 smaller spheres in all but their effect on the arrangement of

-1.5 +
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large spheres is entropically favored, and this can be viewed
on average as an effective attraction between the large

T spheres at small separations.
@ 9,1 ]cs For a more quantitative argument, we begin again with
- the example of a binary liquid mixture; assume the system

containsN; small particles andN; large particles in a vol-
umeV and has partial average number densifigs N, /V

and p3=N3/V. The goal is to formally eliminate the small
R particles from the description of the mixture. The coordinates
and momenta of the particles are given{by,}, and{p; ,},
pn=12,.N;, for the small and large speciés 1,3. In the
canonical ensemble the classical trace with respect to the

coordinates and momenta of spedieser any functiorO of
all coordinates and momenta is defined as

FIG. 4. (a8 Shown is a configuration with the larger spheres 3N,
separated by more than a small sphere diameter: the excluded vol- Tr-[f)]= f dp; 1 --dp; J dri --dr v O
ume for the small spheres is maximél) Shown is a configuration ! N;! hi LN hi LN

where the larger spheres are in contact: the excluded volume is .
minimal. X(rsa,---PpsN3), 1=1,3. (19

(b)

the larger by regarding the latter as an effective one_In particular, the Helmholtz free energy of the binary mix-

component system, then the higher contact value can be iﬁt-”e is then
terpreted as arising from an effective attraction between the
large spheres. The presence of the small spheres evidently
drives the larger spheres together at small separations; t
effective potential will extend outside the core region, exhib
iting an attractive or “sticky” tail. Interesting regions in this
effective potential that may initiate the formation of unusual N; piZ# 1
N i=1,3 (

solids from the melt might well include double wells at in- A, = > += > f drf dr'p?
commensurate separations and flat valleys or humps that p=12mi 2553 0y Jy
suppress normally favored crystalline phases.

In seeking the physical _origin of the effeptiv_e at_traction X(r,r’)(l)i,-(lr—r’l)). (22)
between the large spheres in a hard sphere liquid mixture, we
may appeal to a binary hard sphere mixture with large diam- ) ) )
eters o, and small diameters, (the notation echoes the N Eq.(21), m; is the mass of the particles of speciesnd
previous case of a ternary mixtaraVe neglect the effect of ®ij(r) is the potential energy between two particles of spe-
the mutual exclusion of small spheres arising from their harcfiesi andj at separatiom. The two-particle density operators
core interactions, since we are interested in the regime wheifér the small and large specieg =1,3 are given in terms of
the large spheres fill most of space, this being most relevarthe one-particle density operatb?l)(r)=2;'i (r—ri )
to mixtures close to freezing. The volume from which the
small spheres are excluded is then determined purely by the 57 (r,r")=p{P(Np (1) = &;(r—r")pP(r). (22
density and average arrangement of the larger spheres. For a
particular configuration the volume forbidden to the small Integration over the momentum variables is again trivial,
spheres(because of the presence of the larger spheges and we trace out the coordinates of the small species to de-
additive, provided the separation of the large spheres i§ne
larger than the diameter of the small spheres. The excluded . .
volume per large sphere is just #43) (o, + 05)3/8. Figure exp{ — BHer} = Try exp{ — BH}. (23
4(a) shows a fragment of a configuration where two large
spheres are separated by a distance larger than the diameldle free energy can therefore be expressed formally as a
of the small spheres, and where the total excluded volume {§ace only over the coordinates and momenta of the large
the sum of excluded volumes per large sphere. Should theP€cies, namely,
distance between the large spheres be smaller than the diam- .
eter of the small spheres then the total excluded volume will F=—kgTInTrzexp{—BHen}- (24)
be reduced. Figure (4) shows the case where the large .
spheres are in contact and the total excluded volume is mini- The effective HamiltoniarH ¢ is itself a trace and there-
mal. A configuration in which the large spheres are closefore intermediate between a pure Hamiltonian and a free en-
together reduces the excluded volume for the small spheredgy of the small particles in the instantaneous environment
and by this elementary argument therefore leads to an irPf the large ones. An immediate consequence is that the re-
crease in their entropy. A smaller mean separation betweesulting formal effective potential it is state dependent,

F=—kgTIn Tr3Tr1e"3F', (20)

r\‘/9nere the Hamiltonian contains the kinetic energies of the
“two species,j=1,3, and their interactions, i.e.,
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and, as with the electron case described above, is generally. STRUCTURE FACTORS, CORRELATION FUNCTIONS,
expected to possess many-particle terms; the ensuing effec- AND EFFECTIVE POTENTIALS
tive interactions between the large particles will depend on

the temperature and density of the small particles. X X . e
i : Pt component mixture obtained in the PY approximation have

By construction, the effective Hamiltonidtis preserves  peen given in Sec. II. They are closed-form expressions re-
the partition function. The reduction to an effective Hamil- quiring, as noted, only the five parameters of packing frac-
tonian also preserves the thermal aver@@¢ of any opera-  tions and diameter ratios. The six partial structure factors for
tor O({ps},{rz}) whose value depends only on the momentathe three-component hard sphere liquid are the equivalents of
and coordinates of the large particles, such as, most impothe three partial structure factors for the binary hard sphere
tantly, the two-particle density operator, whose average ignixture under the PY approximation as noted earlier in Ref.
the pair correlation function. This is clear from the definition [9]. The microscopic view of the origin of the depletion po-

The analytical partial structure factors for a three-

of the thermal average in the original system: tential therefore proceeds from the partial structure factor
Sz3(k) of the large species and reinterprets it as an effective
A _ ap (now no longer hard spherene-component structure factor
C :Tr3Tr1[O({p3},{r3})exAp{ sl [19]. S.(K)=S;5(k). The corresponding pair distribution
TraTry[exp{— BH}] function is reinterpreted as the pair distribution function of
the effective one-component liquid, i.@eq(r)=0ss(r). The
Tra[ O({ps}.{rs})exp — BHqi}] correlation function and the structure factor are connected by
= - . (25 a Fourier transform, the Fourier transform pairs being
Tra[exp{— BHen}] plg(r)—1] andS(k)— 1, and related by

The trace over the small subsystem in E2f) may be car- dk

ried out first, since the operator depends only on the coordi- pal Ger(r) —1]= f — [Ser(k) — 1]e'rK, (26)
nates and positions of the large spheres. This allows us to 8m

write the expression as an average in the effective system

without loss of information: in particular, tracing out the with he(r)=ges(r)—1 as theeffective totalkcorrelation func-
small spheres does not affect the pair correlation function ofion.

the large spheres. As discussed in the previous section, the pair distribution

The Hohenberg-Kohn-MermitHKM) theorem[16] in  function of the effective one-component system is linked to
density functional theory guarantees a unique relationshijis corresponding effective pair potential through the free en-
between the one-particle density and an external potentiagrgy. In practice it is difficult to determine the potential from
This can be extenddd 7] to links between the average two- a given pair distribution functiofthe classical inverse prob-
particle denSitwi(jz)(fl,rz)Z(f)i(jz)(rl,rz)) (and thus the pair lem[18]), since in dense fluids very different pair potentials
distribution function and the pair potential;;(r,,r,) via ~ €an pften Ieaq to quite similar structure fa_ctors gnd thus cor-
the Helmholtz free energy for the equi”brium One-partide relation functions. Here we turn to apprOXImate inversions to
density. Multicenter interactions are included in this argu-obtain an expression for the effective potential, the simplest
ment; the issue of the uniqueness of the relationship betweeid most straightforward inversion approximation following
the two-particle density and the pair potential is discussed iffom the very closure relation that led to the solution of the
Ref. [18] (this is sometimes referred to as the “classical OZ equation in the first place. The closure equations can then
inverse problem?. Using this extended HKM approach on be directly solved with respect to the pair potential. Two
the two-particle density of the large spheres in a mixturestraightforward closure relations offer themselves as inver-
leads to an effective pair potential thatsigte dependersind ~ Sion approximations: the Percus-Yevick and the hypernetted
thus formally incorporates the higher-body terms that areqhain(HNC) closure. In addition to the pair correlation func-
generated by tracing out the coordinates of the smaller spdlon, knowledge of the direct correlation function of the ef-
cies in the mixture. fective one-component system is also required.

The relationship between pair potential and pair distribu- The one-component OZ equation links the structure factor
tion function is maintained for state dependent pair potenand the Fourier transform of the direct correlation function:
tials, such as our effective potential. The reason for this is
that the volume dependent terms in the effective Hamiltonian
(those depending only on the total density but not on particle
coordinates cancel from the expectation values such as the
pair correlation function, since they appear in both the nuwherep will now be the number density of the large species.
merator and denominator of E(R5). For the thermodynam- In just this way one might measure experimentally the struc-
ics, especially the value of the free energy, the volume deture factor of a liquid, calculate from it the direct and pair
pendent terms cannot be neglected. In our case, however, werrelation functions, and draw conclusions on the nature of
are concerned only with thstructure of the system as ex- the underlying interaction in the liquid. The effective hard
pressed in the pair correlation function, for which the volumesphere mixture could be a model, for example, for a colloid
terms play no role, and the Hohenberg-Kohn-Mermin theosuspension where only the interaction between the large col-
rem and its extensions to the pair potential remain valid. loid particles is of interest and the presence of the solvent is

Sert(k) = (27)

1-pCeii(k)’
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neglected in all but its modification of the bare colloid po-
tential to an effective, screened interaction.

The effective one-component pair and direct correlation
functions obtained from the partial structure factors via Eqs. 07
(26) and(27) can now be used in an inversion approximation
to calculate their corresponding effective potential. As just
noted, an obvious choice for an inversion is to apply the _
one-component Percus-Yevick approximation in order to ex-%.
tract the effective potential from the effective correlation g~
functions (these were originally obtained from the structure @ -1
factors in the PY approximationThe PY closure statement
for a one-component liquid is given by

tracing out both smaller species

c(r)= a( I’)( 1- eﬁ‘f’(’)) . (28) —-—- tracing out smallest species only
The one-component Percus Yevick closure, @), can be ‘
solved for the pair potential, using the pair distribution and 2+ 15 2
direct correlation functions of the effective one-component 1/o,

liquid, which will produce an effective potential deviating

from the hard sphere potential, namely, FIG. 5. Effective potential@®«(r) between the large spheres

obtained after tracing out the coordinates of the small spheres and
Ceff(r)) after tracing out the coordinates of both the small and medium
. (29 spheres in a three-component hard sphere mixture withos
Ger(r) =0.2, 0,/03=0.6 and packing fractions;;=7,=0.05 and 73
Observe that the pure hard sphere potential is recovered for0-47: PY inversion was used in both cases.
the case that the correlation functions are actually those of
the pure one-component hard sphere liquid. subsume the effects of the smaller spheres and examine the
A second elementary inversion procedure uses the hyperesulting effective interaction between the larger spheres. In
netted chain closure, and this could also be considered aprthree-component mixture we now have the freedom either
propriate, since the effective potential is expected to differto integrate out only the smallest spheres and regard the re-
from the pure hard sphere potential through the presence ofsulting system as an effective binary mixture, or to integrate
longer range tail. The HNC closure for a one-componenbut both the small and medium sized spheres and regard the
liquid is: system as effectively one component. In the latter case the
effective potential reveals the length scales of both smaller
g(r)=e AP =c(r), (30 species,o; and o, and therefore can significantly differ
from effective potentials in binary mixtures.
Figure 5 compares the effective potential between spheres
of the largest species for the case of an effective binary mix-
ture (i.e., after tracing out just variables of the smallest spe-
cies with their pair potential in an effective one-component
HNC/ - 1 _ liquid (i.e., after tracing out the variables of both small and
Adeir (1) =0er(r) ~ 1~ Cer(r) ~IN[Ger(r)]. (3D n?edium sphergdor atgrnary mixture. The PY inversion has
Note that the HNC inversion does not recover the pure har@een used in both cases. The effective potential displays an
sphere potential even if the correlation functions are purehattractive tail outside the core, as anticipated from the high
hard sphere correlation functionfthe terms g(r)—1  contact values of the total correlation function for the large
—Ing(r) fail to vanish outside the coteThus the HNC in-  spheres in the three-component mixture. Figure 5 also shows
version introduces longer range structure outside the corhat the elimination of the intermediate species after the
artificially, and, as is well known, is less appropriate forSmallest deepens the attractive tail even further and also
short range potentials of the hard sphere class. Our effectidgads to a more pronounced structure in the shape of the
potentia| is expected, however, to be |0nger ranged than th@ffective potential. Ellmlnatlng both smaller SpeCieS leads to
pure hard sphere potential, and it is thus instructive to us@ description of the effective potential where the uniqueness

both the PY and HNC inversion approximations for compari-of the three-component mixture appears most clearly in com-
son. parison to the binary mixture. The three-component mixture

offers five parameterghe small and medium relative diam-
eters and the three partial packing fractipnghich can be
adjusted with considerable flexibility to produce physically
interesting potential shapes. It is the behavior of the largest
Consider once again a ternary mixture with large, me-spheres at relatively high packing in a sea of two smaller
dium, and small diameters3>o0,>0, and packing frac- species that is considered as perhaps the most relevant to the
tions 73, 7,,71. As discussed in Sec. IV, we may formally question of the structure of a liquid mixture close to freezing.

ﬁtbzf\{(r)zln(l—

Solving the one-component HNC closuf®0) for the pair
potential using the pair distribution and direct correlation
functions of the effective one-component liquid, we find the
effective potential under the HNC approximation to be

V. EFFECTIVE POTENTIALS AND THE STRUCTURE
OF TERNARY HARD SPHERE MIXTURES
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6,=0.6, 5,=0.2
i A 6,708, 6,=0.2 ] i |
[ —-—- 0,706, 5,=0.4 FN

PP, (r)

_____ n,=0.46, n,=0.1, n,=0.01
. n,=0.44, 1,=0.1, 1,=0.03
i — 1,=0.47, 1,=0.05, 1,=0.05
—-—- 1,=0.42,1,=0.1, 1,=0.05

1/0,

FIG. 6. Effective potentia3d(r) between the large spheres,  FIG- 7. Effective potentiaB®.(r) between the large spheres,
after tracing out the coordinates of both smaller species; shown ater tracing out the coordinates of both smaller species; shown are
the results for three different ternary mixtures all at packipg e results for three different ternary mixtures all with sizes
= 7,=0.05 andz;=0.47 and with varying diameters. o1103=0.2,0,/03=0.6, with varying packing fractions.

Note that the size ratios for all the examples above are

For some examples of effective potentials in three-moderate, which leads us to expect the systems to be in a
component hard sphere mixtures, we start with a system witfegion of fluid mixture(and away from instabilitigs Ex-
diameter ratiosr;/03=0.2, 0,/03=0.6 and packing frac- trapolating from the phase diagrams for binary mixtures in
tions 7, = 7,=0.05 and3;=0.47. Figure 6 compares the Ref.[4] we expect demixing to occur for considerably more
effective potential of that mixture to those of ternary mix- extreme size ratios. But until phase diagrams for three-
tures with the same partial packing fractions but differentcomponent hard sphere mixtures are available, the possibility
diameters. Only the results of the PY inversion are shownef demixing in the above examples cannot be completely
but the PY and HNC approximations agree extremely wellyled out.

(for a comparison between HNC and PY effective potentials,
see Fig. 8 beloyw Note the rich structure of the effective
potentials, and especially the appearance of a flat potentii
well for the mixture with oq/03=0.4 and o,/03=0.6,
which will be examined more closely below. If we vary the
relative packing fractions but keep the sizgsfixed we can
also influence the depth of the valleys and the height of th
peaks in the effective potential. Figure 7 shows a mixture
with diametersr;=0.2 ando,= 0.6 and compares the effec-
tive potential for the situatiomy; = 7,=0.05 and#z;=0.47
with a situation where the medium spheres are more promi
nent at the cost of fewer large spheres with=0.05, 7,
=0.1, andn3=0.41. The total packing fraction is 0.57 in all
cases. State dependence of the effective poterfialsex-
ample, the dependence on relative densities of the small¢
specieg is evident in both Figs. 6 and 7.

Finally, Fig. 8 shows the excellent agreement of the re-
sults for the effective potential for a mixture where both PY : '
and HNC inversions have been used. For this case the p ' /s
rameters arex,/a3=0.4, a,/a3=0.6, ;= 1n,=0.05, and B
73=0.47. The effective potential displays a flat region lack-  FG, 8. Effective potentiaBd® () between the large spheres,
ing a clear minimum. All separations within this flat section after tracing out the coordinates of both smaller species in a mixture
may be seen as energetically equivalent and upon freezingith diameter ratioss; /o03=0.4 and o,/o3=0.6, and packing
could give rise to the kind of structural uncertainty thatfractionss,= 5,=0.05 andy;=0.47. The results of PY and HNC
might permit, at least in terms of packing, the formation ofinversions agree very well. The effective potential displays a flat
noncrystalline solids from the melt. region (see text

PD (1)

—— PY inversion
—-—- HNC inversion
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VI. DISCUSSION using, for example, the Gibbs-Bogoliubov inequality to ob-

Hard spheres represent possibly the simplest model of té:lin bounds on the free energy of a more realistic system.
P P P y P Hard sphere mixtures are also a sufficiently simple model

fluid, neglecting all but the repulsion at short range deeme(iio permit exact solutions of the Ornstein Zernike equation in

largely responsible for packing effects in condensed matter,[.ne PY approximation, but, as was shown, sufficiently com-

Multicomponent mixtures of hard spheres thus serve as im-

ortant reference svstems in the investiaation of the sho lex to show special structural features in their correlation
P 1ce sy g Ifunctions that may well be consistent with the formation of
range correlation in the thermodynamics and structure o

) . g noncrystalline solids. It has also been demonstrated that from
melts of noncrystalline solids, specifically glasses and qua3|t—It1
u

crystals. These special states of condensed matter appear € point of view of the effective potential the ternary mix-

arise as stable or near stable phases only from melts with?e is quite distinct from the binary mixture. Tracing out the
P y variables of both the small and medium spheres evidently

{Eg:emg:jar;:rrr]]ieczltlomsfag?enStE:iiTr’ 2?;30222;??? rt:al;]irtgvo'ffords sufficient additional freedom of parameter choice to
y Y - Yy i quIre absult in a potential with considerable complexity of struc-
least three atomic constituents. A plausible assumption I3 e

that for appropriate concentrations and microscopic length™ ™

scales a thqu_component mtroduces into the structure of the ACKNOWLEDGMENTS
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