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Structure and effective interactions in three-component hard sphere liquids
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Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere
mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing
fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as
applied to multicomponent systems by Lebowitz@Phys. Rev.133, A895 ~1964!#. As an important application,
we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained
in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is
obtained from the correlation functions by using an approximate inversion, and examples of effective potentials
for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study
of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from
melts with at least three atomic constituents.

DOI: 10.1103/PhysRevE.63.041203 PACS number~s!: 61.20.Ne, 82.70.Dd, 05.20.Jj, 61.20.Gy
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I. INTRODUCTION

The starting point of this paper is the determination of
partial structure factors for the three-component hard sph
liquid in the Percus-Yevick approximation, obtained usi
the Laplace transform methods of Wertheim@1#, Thiele @2#,
and Lebowitz@3#. The corresponding total correlation fun
tions then follow by direct Fourier transformation. Fu
knowledge of the analytical partial structure factors and
corresponding correlation functions is the foundation up
which our subsequent investigations ofeffective potentialsin
ternary hard sphere mixtures~Secs. IV and V! rest. The no-
tion of an effective potential in a classical system follows t
familiar corresponding quantum mechanical concept, wh
arises from tracing out ‘‘fast’’ degrees of freedom in a sy
tem with components of different scales, for example, s
tems of electrons and ions. The principle can be transfe
to classical systems, and might be referred to as ‘‘class
screening;’’ it is familiar from the concept of screening
quantum systems, for example, in metals. An immediate
plication is therefore to the idea of effective potentials
they may arise in the ternary hard sphere mixture. In part
lar we show that the presence of three components can
to effective potentials whose shape may even favor the em
gence of unusual solids from the melt. This may occur for
effective potential with flat well regions that allow a contin
ous positioning of particles, or for a potential with doub
wells of comparable depth, or even with peaks in the pot
tial that are positioned at separations where they can inh
standard crystalline arrangements from forming upon fre
ing.

The paper is therefore arranged as follows: Section II p
sents the solution of the Percus-Yevick equation for
three-component hard sphere liquid and gives simple clo
form analytical expressions for the partial structure facto
Sec. III briefly discusses the concept of effective attract
and its entropic origin@4#, Sec. IV introduces our method fo
calculating effective potentials in hard sphere mixtures, a
Sec. V presents examples of effective potentials in thr
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component hard sphere mixtures, the choices of parame
being motivated, in particular, by the observation that no
crystalline solids may often emerge from melts where at le
three atomic constituents are present.

II. THE PARTIAL STRUCTURE FACTORS
FOR THE TERNARY HARD SPHERE LIQUID

The derivation of the analytical partial structure facto
for the three-component hard sphere liquid in the Perc
Yevick approximation extends the Laplace transform me
ods of Wertheim and Thiele for the one-component h
sphere liquid, and of Lebowitz for the binary mixtur
Wiener-Hopf transformation methods have been used s
cessfully by Baxter@5# and for the multicomponent liquid by
Blum and Stell@6#. Paschinger, Reiner, and Kahl@7# have
specifically treated the three-component system by this
proach for the real-space structure. In what follows, the fo
will be on the reciprocal-space structure as manifes
through the partial structure factors, these generally being
quantities most directly related to scattering experiments

The three diameters in the mixture will be taken ass1 for
the smallest species,s2 for the intermediate sized specie
and s3 for the largest species:s1,s2,s3 . The additive
mixture has contact distancess i j 5

1
2 (s i1s j ), and the

Ornstein-Zernike~OZ! equation for the homogeneous te
nary mixture is then

@gi j ~r !21#5ci j ~r !1r i (
l 51,2,3

E
V
@gil ~ ur 82r u!21#

3cl j ~r 8!dr 8. ~1!

In fluid mixtures the Percus-Yevick closure is given by

gi j ~r !~e2bF i j ~r !21!5e2bF i j ~r !ci j ~r ! ~2!

for corresponding pair potentialsF i j . For hard sphere po
tentials the Percus-Yevick~PY! approximation then reduce
to
©2001 The American Physical Society03-1
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gi j ~r !50 for r ,s i j , ~3a!

and

ci j ~r !50 for r .s i j . ~3b!

The Percus-Yevick equation@after insertion of Eqs.~2! and
~3! into Eq. ~1!# can be solved with Laplace transform tec
niques following Lebowitz’s solution for the binary har
sphere mixture@3#. The essential steps to the analytical s
lution to the Percus-Yevick equations are~i! the use of the
PY statements~3! to define an auxiliary function that is pro
portional to the direct correlation function inside the co
proportional to the pair distribution function outside, a
continuous at contact,~ii ! a rewriting of the OZ equation~1!
in terms of an auxiliary function and a rewriting of the int
grals using bipolar coordinates,~iii ! the Laplace transform o
the OZ equation in this form,~iv! the use of Liouville’s
theorem and Watson’s lemma to solve the OZ equation
the Laplace transform of the auxiliary function, and fina
~v! an inverse Laplace transformation to obtain the auxili
functions and thus also the direct correlation functions in r
space.~Extensive details of the calculation for the terna
hard sphere mixture can be found in Ref.@8#.! The manipu-
lations largely follow those presented in Lebowitz’s soluti
for the binary mixture@3#, but the solutions do differ, impor
tantly, in the form of the coefficients for the cubic polyn
mial direct correlation functions.

The direct correlation functions of the ternary hard sph
mixture, with the definitionsxi j 5r 2l i j and l i j 5

1
2 us i

2s j u, are then found to be, for speciesi 51,2,3,

2cii ~r !5ai1bir 1dr3, r ,s i ,

2ci j ~r !52cji ~r !5ai , r ,l i j ,

5ai1~bi j xi j
2 14l i j dxi j

3 1dxi j
4 !/r ,

~4!
l i j ,r ,s i j ,

with the coefficients defined below. The pressurepc via the
compressibility, is given by

bpc~r1 ,r2 ,r3!5H ~r11r21r3!~11j1j2!

2~18/p!(
i , j

~s i2s j !
2@2s i j 1s is j~e1s1

2

1e2s2
21e3s3

2!#J ~12j!23, ~5!

with r i5r i
(1)5Ni /V as the average one-particle density

speciesi. The e i ’s are the reduced partial packing fraction
e i5pr i /6, and simply introduced for calculational ease. T
usual dimensionless definition of the partial packing fract
is in terms of the number density and the diameter o
sphere of speciesi, namely,
04120
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35e is i
3, ~6!

andj5e1s1
31e2s2

31e3s3
3 is the conventional total packing

fraction.
The coefficients~with s i j 5s j i ands i i 5s i) are then

ai5
]@bp~r1 ,r2 ,r3!#

]r i
,

bi526(
l 51

3

e lDil
2gil

2 ~s i l !,

bi j 526(
l 51

3

e ls i l s l j gil ~s i l !gl j ~s l j !,

and

d5 1
2 ~e1a11e2a21e3a3!. ~7!

Correspondingly the pair distribution functions at contact
given by

gii ~s i !5@~12j!1 3
2 s i~e1s1

21e2s2
21e3s3

2!#/~12j!2

and

gi j ~s i j !5@s jgii ~s i !1s igj j ~s j !#/2s i j . ~8!

These contact values are readily obtained from the requ
continuity of the direct correlation function and the pair d
tribution function at contact, that is,2ci j (s i j )5gi j (s i j ).
They are an important thermodynamical corroboration, si
they are related to the pressure~in the exact case! and to the
virial pressure in the PY approximation. The virial pressu
pv can be found from the contact values through the vir
theorem, as generalized to ternary mixtures@3#, namely,

bpv5r11r21r31 2
3 p (

i , j 51,2,3
r ir js i j

2 gi j ~s i j !. ~9!

The partial structure factors can be expressed in terms o
Fourier transforms of the direct correlation functions, and
Fourier transformations of these finite range polynomials
all be expressed in terms of Bessel functions. For the sim
diagonal cases we have

2cii ~k!5E
V
drcii ~r !eik•r

5
4p

k E
0

s i
dr sin~kr !~air 1bir

21dr4!, ~10!

and performing the integral overr we get
3-2
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r icii ~k!52
24e1

k3
„ai@sin~ks i !2ks i cos~ks i !#

1
bi

k
$2ks i sin~ks i !2@~ks i !

222#cos~ks i !22%

1
d

k3
$@4~ks i !

3224ks i #sin~ks i !

2@~ks i !
4212~ks i !

2124#cos~ks i !%…. ~11!

Taking an off-diagonal case we have

2ci j ~k!5
4p

k S E
0

s i j
dr sin~kr !air 1E

l i j

s i j
dr sin~kr !

3@bi j ~r 2l i j !
214l i j d~r 2l i j !

31d~r 2l i j !
4# D ,

~12!

with the result that fori , j

Ar ir j ci j ~k!52
24Ae1e2

k3 Fai@sin~ks i j !2ks i j cos~ks i j !#

1
bi j

k
$2ks i sin~ks i j !1@22~ks i !

2#cos~ks i j !

22 cos~kl i j !%1
4dl i j

k2
$3@~ks i !

222#

3sin~ks i j !1ks i@62~ks i !
2#cos~ks i j !

16 sin~kl i j !%1
d

k3
$4ks i@~ks i !

226#

3sin~ks i j !2@~ks i !
4212~ks i !

2

124#cos~ks i j !124 cos~kl i j !%G . ~13!

We use the definitions of Ref.@9# for the partial structure
factors of a mixture, namely,

Si j ~k!5d i j 1Ar ir jE
V
dr eik•r@gi j ~r !21#

5d i j 1Ar ir jE
V
dr eik•rhi j ~r !. ~14!

These definitions incorporate the standard expectation
the diagonal entriesSii should approach unity for largek, and
the cross termsSi j , iÞ j ~for unlike species!, should ap-
proach zero in the same limit.

Using the Ornstein-Zernike equation in reciprocal spa
we can now rewrite the partial structure factors@9# in terms
of the direct correlation functions, namely,
04120
at

e

S̃i j ~k!5Ar ir j ci j ~k!1(
l

Ar lr j S̃i l ~k!cl j ~k!, ~15!

with the structure factors themselves given bySi j (k)
5S̃i j (k)1d i j . An example for the solution of a diagona
case is then

S11~k!5$12r2c22~k!2r3c33~k!1r2r3

3@c22~k!c33~k!2c23~k!2#%/D~k! ~16!

with the denominator

D~k!512r1c11~k!2r2c22~k!2r3c33~k!

1r1r2c11~k!c22~k!1r1r3c11~k!c33~k!

1r2r3c22~k!c33~k!2r1r2c12~k!22r1r3c13~k!2

2r2r3c23~k!21r1r2r3@c12~k!2c33~k!

1c13~k!2c22~k!1c23~k!2c11~k!

22c12~k!c13~k!c23~k!2c11~k!c22~k!c33~k!#.

~17!

As an example for the off-diagonal case we may give

S12~k!5Ar1r2$c12~k!@12r3c33~k!#

1r3c13~k!c23~k!%/D~k! ~18!

and it is clear that the complete set of partial structure fac
Si j (k) is now straightforwardly evaluated using as input ju
the five parameters of the three-component hard sphere
uid ~the two relative sizes of the hard spheress1 /s3 and
s2 /s3 and the three partial packing fractionsh1 , h2 , and
h3). This set of closed-form functions constitutes a prima
result of the present paper; they are the direct parallels of
~6! of Ashcroft and Langreth~Ref. @9#! for the two-
component case, and direct comparison immediately rev
the degree of complexity introduced by an additional co
ponent. Figures 1 and 2 show, respectively, diago
@Si j (k)# and off-diagonal@Si j (k)# examples of partial struc
ture factors for relative diameterss351, s250.6, ands3
50.2 ~and for packing fractionsh350.47, h250.05, and
h150.05).

III. APPLICATION TO ENTROPIC FORCES: CLASSICAL
SCREENING AND THE NOTION OF THE DEPLETION

POTENTIAL

In metallic systems ionic interactions are often describ
by effective ~and state dependent! potentials; for structural
purposes the electrons are neglected in all but their scree
effect on the interaction between the ions. In the free ene
of a classical system the momenta can be traced over triv
since all momenta are permitted classically. Neverthele
because of the differing set of initial interactions the conc
of effective potentials can still remain applicable to classi
systems. In the classical hard sphere liquids discussed be
we integrate out the degrees of freedom of the smaller s
3-3
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ANJA KÖNIG AND N. W. ASHCROFT PHYSICAL REVIEW E63 041203
cies and subsume their effects in the structure of the syst
through the introduction of an effective interaction betwee
the remaining larger particles. This effective interaction o
effective potential is also referred to as adepletion potential
in the literature on liquid mixtures and colloid suspension
@10–14#. We base our investigation of effective interaction
on the microscopic structure of the mixture, and in the ha
sphere liquid mixtures investigated here the partial structu
factor of the larger spheres is to be reinterpreted as the str
ture factor of an effective one-component system consisti
only of those larger spheres. The presence of the sm
spheres is then expressed only in its effect on the structure
the larger@15# As Fig. 3 demonstrates, the structure of th

FIG. 1. Diagonal structure factors for the ternary hard sphe
mixture as a function ofks3 for diameterss150.2, s250.6, s3

51 and packing fractionsh150.05,h250.05,h350.47.

FIG. 2. Off-diagonal partial structure factors for the ternary har
sphere mixture~and for the parameter set given in Fig. 1!.
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effective one-component system differs from the structure
a pure one-component hard sphere liquid at the same pac
fraction, and corresponds to an effective pair potential
tween the spheres deviating from the pure hard sphere
tential. It will be seen below that there are important diffe
ences between the two- and three-component cases.

To review the concept of effective potentials in the cla
sical context consider a one-component hard sphere liqui
unit diameter with packing fractionh50.47. To this system
hard spheres of smaller diameters are now added, and
interesting to ask how the structure factor and correlat
function of the spheres of unit size change after addition
the smaller spheres. Figure 3 actually answers this ques
by comparing the total correlation function for a on
component liquid of hard spheres of diameters3 and pack-
ing fraction h350.47 with the total correlation function o
those spheres in abinary mixture after small spheres of di
ameters150.2 and packing fractionh150.05 have been
added, and finally in athree-componentmixture where small
spheres of diameters150.2 and packing fractionh150.05
as well as intermediate spheres of diameters250.6 andh2
50.05 have been added. The required total correlation fu
tions of the mixtures are obtained from the partial struct
factors in Sec. II by direct Fourier transformation.

The presence of the smaller spheres is seen to be
pressed in the total correlation function of the large sphe
by the presence of additional peaks or shoulders, and
physically expected these fall at separations roughly co
sponding to the diameter of the smaller species. They a
lead to a higher contact value of the pair distribution functi
of the large species. The length scale of both the small
the medium spheres is clearly revealed in the total corr
tion function of the large spheres. If we now ignore t
smaller spheres in all but their effect on the arrangemen

e
FIG. 3. Total correlation functionh(r )5g(r )21 of the large

spheres with packing fractionh50.47, in a one-component, a b
nary (s1 /s350.2, h150.05, h350.47), and a ternary (s1 /s3

50.2,s2 /s350.6,h15h250.05,h350.47) liquid. These are ob
tained by direct Fourier inversion of the partial structure factors
3-4
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STRUCTURE AND EFFECTIVE INTERACTIONS IN . . . PHYSICAL REVIEW E63 041203
the larger by regarding the latter as an effective o
component system, then the higher contact value can be
terpreted as arising from an effective attraction between
large spheres. The presence of the small spheres evid
drives the larger spheres together at small separations
effective potential will extend outside the core region, exh
iting an attractive or ‘‘sticky’’ tail. Interesting regions in thi
effective potential that may initiate the formation of unusu
solids from the melt might well include double wells at i
commensurate separations and flat valleys or humps
suppress normally favored crystalline phases.

In seeking the physical origin of the effective attracti
between the large spheres in a hard sphere liquid mixture
may appeal to a binary hard sphere mixture with large dia
eterss3 and small diameterss1 ~the notation echoes th
previous case of a ternary mixture!. We neglect the effect o
the mutual exclusion of small spheres arising from their h
core interactions, since we are interested in the regime w
the large spheres fill most of space, this being most relev
to mixtures close to freezing. The volume from which t
small spheres are excluded is then determined purely by
density and average arrangement of the larger spheres.
particular configuration the volume forbidden to the sm
spheres~because of the presence of the larger spheres! is
additive, provided the separation of the large spheres
larger than the diameter of the small spheres. The exclu
volume per large sphere is just (4p/3)(s11s3)3/8. Figure
4~a! shows a fragment of a configuration where two lar
spheres are separated by a distance larger than the dia
of the small spheres, and where the total excluded volum
the sum of excluded volumes per large sphere. Should
distance between the large spheres be smaller than the d
eter of the small spheres then the total excluded volume
be reduced. Figure 4~b! shows the case where the larg
spheres are in contact and the total excluded volume is m
mal. A configuration in which the large spheres are clo
together reduces the excluded volume for the small sph
and by this elementary argument therefore leads to an
crease in their entropy. A smaller mean separation betw

FIG. 4. ~a! Shown is a configuration with the larger spher
separated by more than a small sphere diameter: the excluded
ume for the small spheres is maximal.~b! Shown is a configuration
where the larger spheres are in contact: the excluded volum
minimal.
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large spheres is entropically favored, and this can be view
on average as an effective attraction between the la
spheres at small separations.

For a more quantitative argument, we begin again w
the example of a binary liquid mixture; assume the syst
containsN1 small particles andN3 large particles in a vol-
ume V and has partial average number densitiesr15N1 /V
and r35N3 /V. The goal is to formally eliminate the sma
particles from the description of the mixture. The coordina
and momenta of the particles are given by$r i ,m%, and$pi ,m%,
m51,2,...,Ni , for the small and large speciesi 51,3. In the
canonical ensemble the classical trace with respect to
coordinates and momenta of speciesi over any functionÔ of
all coordinates and momenta is defined as

Tri@Ô#5
h23Ni

Ni !
E dpi ,1¯dpi ,Ni

E dr i ,1¯dr i ,Ni
Ô

3~r s,1,...,pb ,N3!, i 51,3. ~19!

In particular, the Helmholtz free energy of the binary mi
ture is then

F52kBT ln Tr3Tr1e2bĤ, ~20!

where the Hamiltonian contains the kinetic energies of
two speciesi , j 51,3, and their interactions, i.e.,

Ĥ i j 5 (
i 51,3

S (
m51

Ni pi ,m
2

2mi
1

1

2 (
j 51,3

E
V
drE

V
dr 8r̂ i j

~2!

3~r ,r 8!F i j ~ ur2r 8u!D . ~21!

In Eq. ~21!, mi is the mass of the particles of speciesi, and
F i j (r ) is the potential energy between two particles of sp
ciesi andj at separationr . The two-particle density operator
for the small and large speciesi , j 51,3 are given in terms of
the one-particle density operatorr̂ i

(1)(r )5Sm
Nid(r2r i ,m):

r̂ i j
~2!~r ,r 8!5 r̂ i

~1!~r !r̂ j
~1!~r 8!2d i j d~r2r 8!r̂ i

~1!~r !. ~22!

Integration over the momentum variables is again trivi
and we trace out the coordinates of the small species to
fine

exp$2bĤeff%5Tr1 exp$2bĤ%. ~23!

The free energy can therefore be expressed formally a
trace only over the coordinates and momenta of the la
species, namely,

F52kBT ln Tr3 exp$2bĤeff%. ~24!

The effective HamiltonianĤeff is itself a trace and there
fore intermediate between a pure Hamiltonian and a free
ergy of the small particles in the instantaneous environm
of the large ones. An immediate consequence is that the
sulting formal effective potential inĤeff is state dependent

ol-

is
3-5
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ANJA KÖNIG AND N. W. ASHCROFT PHYSICAL REVIEW E63 041203
and, as with the electron case described above, is gene
expected to possess many-particle terms; the ensuing e
tive interactions between the large particles will depend
the temperature and density of the small particles.

By construction, the effective HamiltonianĤeff preserves
the partition function. The reduction to an effective Ham
tonian also preserves the thermal average^Ô& of any opera-
tor Ô($p3%,$r3%) whose value depends only on the mome
and coordinates of the large particles, such as, most im
tantly, the two-particle density operator, whose average
the pair correlation function. This is clear from the definitio
of the thermal average in the original system:

^Ô&5
Tr3Tr1@Ô~$p3%,$r3%!exp$2bĤ%#

Tr3Tr1@exp$2bĤ%#

5
Tr3@Ô~$p3%,$r3%!exp$2bĤeff%#

Tr3@exp$2bĤeff%#
. ~25!

The trace over the small subsystem in Eq.~25! may be car-
ried out first, since the operator depends only on the coo
nates and positions of the large spheres. This allows u
write the expression as an average in the effective sys
without loss of information: in particular, tracing out th
small spheres does not affect the pair correlation function
the large spheres.

The Hohenberg-Kohn-Mermin~HKM ! theorem @16# in
density functional theory guarantees a unique relations
between the one-particle density and an external poten
This can be extended@17# to links between the average two
particle densityr i j

(2)(r1 ,r2)5^r̂ i j
(2)(r1 ,r2)& ~and thus the pair

distribution function! and the pair potentialF i j (r1 ,r2) via
the Helmholtz free energy for the equilibrium one-partic
density. Multicenter interactions are included in this arg
ment; the issue of the uniqueness of the relationship betw
the two-particle density and the pair potential is discusse
Ref. @18# ~this is sometimes referred to as the ‘‘classic
inverse problem’’!. Using this extended HKM approach o
the two-particle density of the large spheres in a mixt
leads to an effective pair potential that isstate dependentand
thus formally incorporates the higher-body terms that
generated by tracing out the coordinates of the smaller
cies in the mixture.

The relationship between pair potential and pair distrib
tion function is maintained for state dependent pair pot
tials, such as our effective potential. The reason for this
that the volume dependent terms in the effective Hamilton
~those depending only on the total density but not on part
coordinates! cancel from the expectation values such as
pair correlation function, since they appear in both the
merator and denominator of Eq.~25!. For the thermodynam
ics, especially the value of the free energy, the volume
pendent terms cannot be neglected. In our case, howeve
are concerned only with thestructureof the system as ex
pressed in the pair correlation function, for which the volum
terms play no role, and the Hohenberg-Kohn-Mermin th
rem and its extensions to the pair potential remain valid.
04120
lly
c-

n

a
r-
is

i-
to
m

f

ip
al.

-
en
in
l

e

e
e-

-
-

is
n
le
e
-

-
we

e
-

IV. STRUCTURE FACTORS, CORRELATION FUNCTIONS,
AND EFFECTIVE POTENTIALS

The analytical partial structure factors for a thre
component mixture obtained in the PY approximation ha
been given in Sec. II. They are closed-form expressions
quiring, as noted, only the five parameters of packing fr
tions and diameter ratios. The six partial structure factors
the three-component hard sphere liquid are the equivalen
the three partial structure factors for the binary hard sph
mixture under the PY approximation as noted earlier in R
@9#. The microscopic view of the origin of the depletion p
tential therefore proceeds from the partial structure fac
S33(k) of the large species and reinterprets it as an effec
~now no longer hard sphere! one-component structure facto
@19#. Seff(k)5S33(k). The corresponding pair distributio
function is reinterpreted as the pair distribution function
the effective one-component liquid, i.e.,geff(r)5g33(r ). The
correlation function and the structure factor are connected
a Fourier transform, the Fourier transform pairs bei
r@g(r )21# andS(k)21, and related by

r3@geff~r !21#5E dk

8p3
@Seff~k!21#ei r•k, ~26!

with heff(r)5geff(r)21 as theeffective totalcorrelation func-
tion.

As discussed in the previous section, the pair distribut
function of the effective one-component system is linked
its corresponding effective pair potential through the free
ergy. In practice it is difficult to determine the potential fro
a given pair distribution function~the classical inverse prob
lem @18#!, since in dense fluids very different pair potentia
can often lead to quite similar structure factors and thus c
relation functions. Here we turn to approximate inversions
obtain an expression for the effective potential, the simp
and most straightforward inversion approximation followin
from the very closure relation that led to the solution of t
OZ equation in the first place. The closure equations can t
be directly solved with respect to the pair potential. Tw
straightforward closure relations offer themselves as inv
sion approximations: the Percus-Yevick and the hyperne
chain~HNC! closure. In addition to the pair correlation func
tion, knowledge of the direct correlation function of the e
fective one-component system is also required.

The one-component OZ equation links the structure fac
and the Fourier transform of the direct correlation functio

Seff~k!5
1

12rceff~k!
, ~27!

wherer will now be the number density of the large specie
In just this way one might measure experimentally the str
ture factor of a liquid, calculate from it the direct and pa
correlation functions, and draw conclusions on the nature
the underlying interaction in the liquid. The effective ha
sphere mixture could be a model, for example, for a coll
suspension where only the interaction between the large
loid particles is of interest and the presence of the solven
3-6
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neglected in all but its modification of the bare colloid p
tential to an effective, screened interaction.

The effective one-component pair and direct correlat
functions obtained from the partial structure factors via E
~26! and~27! can now be used in an inversion approximati
to calculate their corresponding effective potential. As j
noted, an obvious choice for an inversion is to apply
one-component Percus-Yevick approximation in order to
tract the effective potential from the effective correlati
functions~these were originally obtained from the structu
factors in the PY approximation!. The PY closure statemen
for a one-component liquid is given by

c~r !5g~r !~12ebf~r !!. ~28!

The one-component Percus Yevick closure, Eq.~28!, can be
solved for the pair potential, using the pair distribution a
direct correlation functions of the effective one-compon
liquid, which will produce an effective potential deviatin
from the hard sphere potential, namely,

bFeff
PY~r !5 lnS 12

ceff~r !

geff~r ! D . ~29!

Observe that the pure hard sphere potential is recovered
the case that the correlation functions are actually thos
the pure one-component hard sphere liquid.

A second elementary inversion procedure uses the hy
netted chain closure, and this could also be considered
propriate, since the effective potential is expected to dif
from the pure hard sphere potential through the presence
longer range tail. The HNC closure for a one-compon
liquid is:

g~r !5e2bF~r !1h~r !2c~r !. ~30!

Solving the one-component HNC closure~30! for the pair
potential using the pair distribution and direct correlati
functions of the effective one-component liquid, we find t
effective potential under the HNC approximation to be

bFeff
HNC~r !5geff~r !212ceff~r !2 ln@geff~r !#. ~31!

Note that the HNC inversion does not recover the pure h
sphere potential even if the correlation functions are pur
hard sphere correlation functions@the terms g(r )21
2 ln g(r) fail to vanish outside the core#. Thus the HNC in-
version introduces longer range structure outside the c
artificially, and, as is well known, is less appropriate f
short range potentials of the hard sphere class. Our effec
potential is expected, however, to be longer ranged than
pure hard sphere potential, and it is thus instructive to
both the PY and HNC inversion approximations for compa
son.

V. EFFECTIVE POTENTIALS AND THE STRUCTURE
OF TERNARY HARD SPHERE MIXTURES

Consider once again a ternary mixture with large, m
dium, and small diameterss3.s2.s1 and packing frac-
tions h3 ,h2 ,h1 . As discussed in Sec. IV, we may formal
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subsume the effects of the smaller spheres and examine
resulting effective interaction between the larger spheres
a three-component mixture we now have the freedom ei
to integrate out only the smallest spheres and regard the
sulting system as an effective binary mixture, or to integr
out both the small and medium sized spheres and regard
system as effectively one component. In the latter case
effective potential reveals the length scales of both sma
species,s1 and s2 , and therefore can significantly diffe
from effective potentials in binary mixtures.

Figure 5 compares the effective potential between sph
of the largest species for the case of an effective binary m
ture ~i.e., after tracing out just variables of the smallest sp
cies! with their pair potential in an effective one-compone
liquid ~i.e., after tracing out the variables of both small a
medium spheres! for a ternary mixture. The PY inversion ha
been used in both cases. The effective potential display
attractive tail outside the core, as anticipated from the h
contact values of the total correlation function for the lar
spheres in the three-component mixture. Figure 5 also sh
that the elimination of the intermediate species after
smallest deepens the attractive tail even further and
leads to a more pronounced structure in the shape of
effective potential. Eliminating both smaller species leads
a description of the effective potential where the uniquen
of the three-component mixture appears most clearly in co
parison to the binary mixture. The three-component mixt
offers five parameters~the small and medium relative diam
eters and the three partial packing fractions!, which can be
adjusted with considerable flexibility to produce physica
interesting potential shapes. It is the behavior of the larg
spheres at relatively high packing in a sea of two sma
species that is considered as perhaps the most relevant t
question of the structure of a liquid mixture close to freezin

FIG. 5. Effective potentialsbFeff(r) between the large sphere
obtained after tracing out the coordinates of the small spheres
after tracing out the coordinates of both the small and med
spheres in a three-component hard sphere mixture withs1 /s3

50.2, s2 /s350.6 and packing fractionsh15h250.05 andh3

50.47; PY inversion was used in both cases.
3-7
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For some examples of effective potentials in three
component hard sphere mixtures, we start with a system w
diameter ratioss1 /s350.2, s2 /s350.6 and packing frac-
tions h15h250.05 andh350.47. Figure 6 compares the
effective potential of that mixture to those of ternary mix
tures with the same partial packing fractions but differe
diameters. Only the results of the PY inversion are show
but the PY and HNC approximations agree extremely we
~for a comparison between HNC and PY effective potentia
see Fig. 8 below!. Note the rich structure of the effective
potentials, and especially the appearance of a flat poten
well for the mixture with s1 /s350.4 and s2 /s350.6,
which will be examined more closely below. If we vary the
relative packing fractions but keep the sizess i fixed we can
also influence the depth of the valleys and the height of t
peaks in the effective potential. Figure 7 shows a mixtu
with diameterss150.2 ands250.6 and compares the effec-
tive potential for the situationh15h250.05 andh350.47
with a situation where the medium spheres are more prom
nent at the cost of fewer large spheres withh150.05, h2
50.1, andh350.41. The total packing fraction is 0.57 in all
cases. State dependence of the effective potentials~for ex-
ample, the dependence on relative densities of the sma
species! is evident in both Figs. 6 and 7.

Finally, Fig. 8 shows the excellent agreement of the r
sults for the effective potential for a mixture where both P
and HNC inversions have been used. For this case the
rameters area1 /a350.4, a2 /a350.6, h15h250.05, and
h350.47. The effective potential displays a flat region lack
ing a clear minimum. All separations within this flat sectio
may be seen as energetically equivalent and upon freez
could give rise to the kind of structural uncertainty tha
might permit, at least in terms of packing, the formation o
noncrystalline solids from the melt.

FIG. 6. Effective potentialbFeff(r) between the large spheres
after tracing out the coordinates of both smaller species; shown
the results for three different ternary mixtures all at packingh1

5h250.05 andh350.47 and with varying diameters.
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Note that the size ratios for all the examples above
moderate, which leads us to expect the systems to be
region of fluid mixture~and away from instabilities!. Ex-
trapolating from the phase diagrams for binary mixtures
Ref. @4# we expect demixing to occur for considerably mo
extreme size ratios. But until phase diagrams for thr
component hard sphere mixtures are available, the possib
of demixing in the above examples cannot be complet
ruled out.

re

FIG. 7. Effective potentialbFeff(r) between the large sphere
after tracing out the coordinates of both smaller species; shown
the results for three different ternary mixtures all with siz
s1 /s350.2, s2 /s350.6, with varying packing fractions.

FIG. 8. Effective potentialbFeff(r) between the large sphere
after tracing out the coordinates of both smaller species in a mix
with diameter ratioss1 /s350.4 and s2 /s350.6, and packing
fractionsh15h250.05 andh350.47. The results of PY and HNC
inversions agree very well. The effective potential displays a
region ~see text!.
3-8
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VI. DISCUSSION

Hard spheres represent possibly the simplest model
fluid, neglecting all but the repulsion at short range deem
largely responsible for packing effects in condensed ma
Multicomponent mixtures of hard spheres thus serve as
portant reference systems in the investigation of the s
range correlation in the thermodynamics and structure
melts of noncrystalline solids, specifically glasses and qu
crystals. These special states of condensed matter appe
arise as stable or near stable phases only from melts
more than one atomic constituent, and often more than t
thermodynamically stable quasicrystals seem to require
least three atomic constituents. A plausible assumption
that for appropriate concentrations and microscopic len
scales a third component introduces into the structure of
melt the additional complexity necessary to allow the form
tion of these ‘‘nontraditional’’ solids. Since the structure fa
tors are given analytically in the Percus-Yevick approxim
tion for hard sphere mixtures~as for the one-componen
liquid!, the hard sphere model is also especially appealin
a reference model for thermodynamic perturbation theor
the
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using, for example, the Gibbs-Bogoliubov inequality to o
tain bounds on the free energy of a more realistic system

Hard sphere mixtures are also a sufficiently simple mo
to permit exact solutions of the Ornstein Zernike equation
the PY approximation, but, as was shown, sufficiently co
plex to show special structural features in their correlat
functions that may well be consistent with the formation
noncrystalline solids. It has also been demonstrated that f
the point of view of the effective potential the ternary mi
ture is quite distinct from the binary mixture. Tracing out th
variables of both the small and medium spheres evide
affords sufficient additional freedom of parameter choice
result in a potential with considerable complexity of stru
ture.
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